Circle True or False or leave blank. (1 point for correct answer, -1 for incorrect answer, 0 if left blank)

1. True FALSE To show that X, Y are not independent random variables, we need to show that $P(X=x, Y=y) \neq P(X=x) P(Y=y)$ for all choices of x, y.

Solution: We only need to show it for a single counterexample of x, y.
2. True FALSE If x is not in the range of X and f is the PMF of X, then $f(x)$ does not exist.

Solution: $f(x)=P(X=x)$ and since x is not in the range, then $f(x)=P(X=$ $x)=0$. So it is defined but equal to 0 .

Show your work and justify your answers. Please circle or box your final answer.
3. (10 points) (a) (6 points) I am playing a game where I flip a coin over and over until I either flip a tails, or flip the coin 4 times. Let X be the random variable for how many times I need to flip the coin. Compute and draw the PMF of X. (Hint: Can you flip the coin 5 times? Calculate the range of X first)

Solution: The game must end by the end of the 4 rd round so the range of X is $\{1,2,3,4\}$. Then $P(X=1)=\frac{1}{2}$ because the only way it ends is if we flip a tails. Then $P(X=2)=\frac{1}{2} \cdot \frac{1}{2}$ because we need to first flip a heads then flip a tail. Similarly $P(X=3)=\frac{1}{2^{3}}$ because the only way this can happen is HHT. Finally, we have that $P(X=4)=1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}=\frac{1}{8}$ because that is if the game does not end in the first, second, or third round. So the PMF is

x	1	2	3	4
$f(x)$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{8}$

(b) (2 points) Let Y be the random variable that is 1 if the first flip is a tails and 0 otherwise. What is the PMF of Y ?

$$
\text { Solution: } \begin{array}{c||c|c}
x & 0 & 1 \\
\hline \hline f(x) & \frac{1}{2} & \frac{1}{2}
\end{array}
$$

(c) (2 points) Are X and Y independent random variables?

Solution: No they are not. Intuitively if we know that $Y=1$, then we know that we flipped a tails so we know that the game ended and so $X=1$. In math, this says that

$$
P(X=1, Y=1)=\frac{1}{2} \neq P(X=1) P(Y=1)=\frac{1}{4}
$$

